372 research outputs found

    The twist-bend nematic phase: translational self-diffusion and biaxiality studied by 1H nuclear magnetic resonance diffusometry

    Get PDF
    Recently, there has been a surge of interest in mesogens exhibiting the twist-bend nematic (NTB) phase that is shown to be chiral even though formed by effectively achiral molecules. Although it now seems to be clear that the NTB phase in the bulk is formed by degenerate domains having opposite handedness, the presence of a supramolecular heliconical structure proposed in the Dozov model has been contradicted by the Hoffmann et al. model in which the heliconical arrangement is replaced by a polar nematic phase. The evidence in support of this is that the quadrupolar splitting tensor measured in various experiments is uniaxial and not biaxial as expected for the twist-bend nematic structure. In this debate, among other evidence, the molecular translational diffusion, and its magnitude with respect to that in the nematic phase above the NTB phase, has also been invoked to eliminate or to confirm one model or the other. We attempt to resolve this issue by reporting the first measurements of the translational self-diffusion coefficients in the nematic and twist-bend nematic phases formed 1″,7″-bis-4-(4′-cyanobiphenyl-4′-yl) heptane (CB7CB). Such measurements certainly appear to resolve the differences between the two models in favour of that for the classic twist-bend nematic phase

    Tectono-stratigraphic evolution of the intermontane Tarom Basin (NW sectors of the Arabia-Eurasia collision zone): insights into the vertical growth of the Iranian Plateau margin

    Get PDF
    The intermontane Tarom Basin of NW Iran (Arabia-Eurasia collision zone) is located at the transition between the Iranian Plateau (IP) to the SW and the Alborz Mountains to the NE. This basin was filled by Late Cenozoic synorogenic red beds that retain first-order information on the erosional history of adjacent topography, the vertical growth of the plateau margin and its lateral (orogen perpendicular) expansion. Here, we perform a multidisciplinary study including magnetostratigraphy, sedimentology, geochronology and sandstone petrography on these red beds. Our data show that widespread Eocene arc volcanism in NW Iran terminated at ~ 38-36 Ma, while intrabasinal synorogenic sedimentation occurred between ~ 16.5 and < 7.6 Ma, implying that the red beds are stratigraphically equivalent to the Upper Red Formation. After 7.6 Ma, the basin experienced intrabasinal deformation, uplift and erosion in association with the establishment of external drainage. Fluvial connectivity with the Caspian Sea, however, was interrupted by at least four episodes of basin aggradation. During endorheic conditions the basin fill did not reach the elevation of the plateau interior and hence the Tarom Basin was never integrated into the plateau realm. Furthermore, our provenance data indicate that the northern margin of the basin experienced a greater magnitude of deformation and exhumation than the southern one (IP margin). This agrees with recent Moho depth estimates, suggesting that crustal shortening and thickening cannot be responsible for the vertical growth of the northern margin of the IP, and hence surface uplift must have been driven by deep-seated processes

    Tectono-stratigraphic evolution of the intermontane Tarom Basin (NW sectors of the Arabia-Eurasia collision zone): insights into the vertical growth of the Iranian Plateau margin

    Get PDF
    The intermontane Tarom Basin of NW Iran (Arabia-Eurasia collision zone) is located at the transition between the Iranian Plateau (IP) to the SW and the Alborz Mountains to the NE. This basin was filled by Late Cenozoic synorogenic red beds that retain first-order information on the erosional history of adjacent topography, the vertical growth of the plateau margin and its lateral (orogen perpendicular) expansion. Here, we perform a multidisciplinary study including magnetostratigraphy, sedimentology, geochronology and sandstone petrography on these red beds. Our data show that widespread Eocene arc volcanism in NW Iran terminated at ~ 38-36 Ma, while intrabasinal synorogenic sedimentation occurred between ~ 16.5 and < 7.6 Ma, implying that the red beds are stratigraphically equivalent to the Upper Red Formation. After 7.6 Ma, the basin experienced intrabasinal deformation, uplift and erosion in association with the establishment of external drainage. Fluvial connectivity with the Caspian Sea, however, was interrupted by at least four episodes of basin aggradation. During endorheic conditions the basin fill did not reach the elevation of the plateau interior and hence the Tarom Basin was never integrated into the plateau realm. Furthermore, our provenance data indicate that the northern margin of the basin experienced a greater magnitude of deformation and exhumation than the southern one (IP margin). This agrees with recent Moho depth estimates, suggesting that crustal shortening and thickening cannot be responsible for the vertical growth of the northern margin of the IP, and hence surface uplift must have been driven by deep-seated processes

    Geochronology, geochemistry and geodynamics of the Cabo de Gata volcanic zone, Southeastern Spain

    Get PDF
    © 2014 Societa Geologica Italiana, Roma. New 40Ar/39Ar ages and major and trace element geochemistry of the middle-late Miocene Cabo de Gata volcanic complex, southeast Spain, indicate that the volcanic activity of the Cabo de Gata volcanic zone developed over a short period through several pulses of geochemically and isotopically different parental magmas. The oldest volcanic rocks exposed in the Cabo de Gata volcanic zone are the shoshonite and high-K calc-Alkaline rocks of Bujo group, which cry - stallised from a parental magma transitional from calc-Alkaline to alkaline potassic generated through large degrees of partial melting, and then affected by a minor contribution from metasomatised veins and a larger one from the surrounding mantle wedge, in comparison to ultrapotassic melts. Subsequent partial melting of the mantle source produced typical calc-Alkaline parental magmas belonging to the Rodalquilar and Agua Amarga groups. Sr-Nd-Pb isotope and incompatible trace element distributions of Cabo de Gata rocks are in agreement with a mantle-wedge source affected by a two-fold metasomatism. The data suggested that mild potassic to sub-Alkaline subduction-related parental magmas (i.e., high-K calc-Alkaline and calc-Alkaline) were generated in the Cabo de Gata sector within a mantle wedge metasomatised by a fluid-dominated agent. In contrast, the enrichment in K2O of shoshonitic to ultrapotassic magmas was achieved through recycling of subducted sediments through melts that enriched the mantle wedge in K and related elements. Such a scenario can be easily reconciled with a geodynamic setting at the edge of a destructive plate margin with the subducted slab responsible for the recycling of sediments within the mantle wedge.Geochemical, petrographic and analytical work were supported by the Italian MIUR through Cofin_2004 (grants #2004040502_001 and 2004040502_002), Cofin_2008 (grants #2008HMHYFP_002 and 2008HMHYFP_004) and Cofin_2010-2011 (grants #2010TT22SC_001, 2010TT22SC_005 and 2010TT22SC_006; 2010TT22SC_003) projects, to Sandro Conticelli and Massimo Mattei, respectively. Further financial support for geochronological analyses was provided by Spanish projects CGL2009-06968-E, CGL2005-03511/BTE and HI2006-0073 to Carles C. Soriano.Peer Reviewe

    Geologic map, volcanic stratigraphy and structure of the Cabo de Gata volcanic zone, Betic-Rif orogen, SE Spain

    Get PDF
    The geologic map of the Neogene Cabo de Gata volcanic zone is presented together with a comprehensive volcanic stratigraphy and structure based on logging, correlation and mapping. Volcanic rocks are interbedded with sedimentary rocks throughout the Cabo de Gata volcanic zone. The volcano-sedimentary succession of Cabo de Gata has been divided into formations according to lithology, age, composition and stratigraphic position. The contacts between sedimentary units and volcanic units and between formations are unconformities. Sedimentary units were deposited during periods of volcanic repose. The depositional environment of volcanism in Cabo de Gata is characterized as shallow-water submarine to emergent based on lithofacies of volcanic rocks and on fossil content and sedimentary structures of sedimentary rocks. The eruptive style in Cabo de Gata is dominantly effusive, although small-volume explosive eruptions due to magma-water interaction processes and to explosions of lava flow and domes complexes occurred.Peer Reviewe

    An integrated structural and magnetic fabric study to constrain the progressive extensional tectonics of the Rio do Peixe Basin, Brazil

    Get PDF
    We constrained the tectonic evolution of the intracratonic Cretaceous Rio do Peixe Basin (RPB) in NE Brazil, combining structural and Anisotropy of Magnetic Susceptibility (AMS) data. We analyzed the structural features of four sites along two major faults bordering the basin, the NE-striking Portalegre Fault and the E-W-striking Malta Fault. AMS data from 42 sites in the syn-rift sandstone suggest two stretching directions driving the opening of the RPB. The early syn-rift phase I resulted from N-S to NNE-SSW stretching direction with vertical sigma 1, producing normal fault displacement along the E-W-striking Malta Fault and right-lateral transtension along the NE-striking Portalegre Fault, Sitio Sagui and Lagoa do Forno faults. The syn-rift phase II resulted from NW-SE stretching direction with vertical sigma 1, causing normal displacement on NE-striking major faults and left-lateral transtension on E-W-striking major faults. Additionally, the NW-SE extension was responsible for forming NE-striking extensional faults and deformation bands in sedimentary units. The RPB developed due to the intraplate deformation of the Borborema Province during the early stage of the Pangea Breakup and recorded two stretching directions that gradually shifted from NNE-SSW to NW-SE as a consequence of the South America clockwise rotation. The extensional stress orthogonal to the main E-W-striking and NE-striking Precambrian shear zones facilitated the opening and evolution of the RPB

    TIMP3 interplays with apelin to regulate cardiovascular metabolism in hypercholesterolemic mice

    Get PDF
    Tissue inhibitor of metalloproteinase 3 (TIMP3) is an extracellular matrix (ECM) bound protein, which has been shown to be downregulated in human subjects and experimental models with cardiometabolic disorders, including type 2 diabetes mellitus, hypertension and atherosclerosis. The aim of this study was to investigate the effects of TIMP3 on cardiac energy homeostasis during increased metabolic stress conditions

    The 20-22 January 2007 Snow Events over Canada: Microphysical Properties

    Get PDF
    One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve precipitation measurements in mid- and high-latitudes during cold seasons through the use of high-frequency passive microwave radiometry. Toward this end, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a Satellite Data Simulation Unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for snowstorm events (January 20-22, 2007) that took place over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) ground site (Centre for Atmospheric Research Experiments - CARE) in Ontario, Canada. In this paper, the performance of the Goddard cloud microphysics scheme both with 2ice (ice and snow) and 3ice (ice, snow and graupel) as well as other WRF microphysics schemes will be presented. The results are compared with data from the Environment Canada (EC) King Radar, an operational C-band radar located near the CARE site. In addition, the WRF model output is used to drive the Goddard SDSU to calculate radiances and backscattering signals consistent with direct satellite observations for evaluating the model results

    WRF Simulations of the 20-22 January 2007 Snow Events over Eastern Canada: Comparison with In-Situ and Satellite Observations

    Get PDF
    One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold season precipitation measurements in middle and high latitudes through the use of high-frequency passive microwave radiometry. For this, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a satellite data simulation unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for two snowstorm events, a lake effect and a synoptic event, that occurred between 20 and 22 January 2007 over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) site in Ontario, Canada. The 24h-accumulated snowfall predicted by the WRF model with the Goddard microphysics was comparable to the observed accumulated snowfall by the ground-based radar for both events. The model correctly predicted the onset and ending of both snow events at the CARE site. WRF simulations capture the basic cloud properties as seen by the ground-based radar and satellite (i.e., CloudSAT, AMSU-B) observations as well as the observed cloud streak organization in the lake event. This latter result reveals that WRF was able to capture the cloud macro-structure reasonably well
    • …
    corecore